
1

ITI 1120 Lab #10

Contents: 2004 exam,
 and how to solve it!

Question 1A [4]

• Environment Canada will report a humidex value as
part of a weather forecast if the temperature (t) is
greater than or equal to 30 degrees, if the
temperature is greater than or equal to 25 degrees
and the humidity (h) is greater than 35%, or the
temperature is greater than or equal to 20 degrees
and the humidity is greater than or equal to 65%.

• Write a Boolean expression that is true if
Environment Canada will report a humidex value, and
false otherwise.

2

Question 1A

• Environment Canada will report a humidex value as
part of a weather forecast if the temperature (t) is
greater than or equal to 30 degrees, if the
temperature is greater than or equal to 25 degrees
and the humidity (h) is greater than 35%, or the
temperature is greater than or equal to 20 degrees
and the humidity is greater than or equal to 65%.

• Answer:

t ≥ 30 OR (t ≥ 25 AND h > 35) OR (t ≥ 20 AND h ≥ 65)

Question 1B [4]

• Consider the following Java program :
 MyClass[] obj;

 int index;

 obj = new MyClass[2];

 index = 15;

 while(index > 2)

 {

 obj[index % 2] = new MyClass();

 index = index / 2;

 }

 // Line X

• How many instances of MyClass are created during the
execution of this program? [2]

• How many instances of MyClass are still accessible at Line X?
[2]

3

Question 1B

obj index # objects

Initial values ? ?

obj = new MyClass[2];

index = 15; 15

while(index > 2) :

true

obj[index % 2] = new

MyClass();
1

index = index / 2; 7

while(index > 2) :

true

 



Question 1B

obj index # objects

From previous page 7 1

obj[index % 2] = new

MyClass();
2

index = index / 2; 3

while(index > 2) :

true

obj[index % 2] = new

MyClass();
3

index = index / 2; 1

while(index > 2) :

false







Number of objects created: 3 Number still accessible: 1

4

Question 1C [4]
class Foo

{

 private int x1;

 public static int x2;

 public static Bar x3;

 public Foo(int x4)

 {

 ...

 }

}

class Bar

{

 public int x5;

 public static int x6()

 {

 ...

 }

 public Foo x7()

 {

 ...

 }

}

 • Suppose that the following instructions are used in the main() method in a class
Test. Each choice should be considered independently – as it if were in its own
main() method. Circle the letter of the statement which causes a compilation
error.

 (a) Foo[] a = new Foo[5]; d) int k = Foo.x3.x5;

 a[4] = new Foo(-1);

 (b) Foo f = Bar.x7(); e) Bar b = new Bar();

 (c) Foo.x2 = Bar.x6(); Foo f = b.x7();

Question 1C
class Foo

{

 private int x1;

 public static int x2;

 public static Bar x3;

 public Foo(int x4)

 {

 ...

 }

}

class Bar

{

 public int x5;

 public static int x6()

 {

 ...

 }

 public Foo x7()

 {

 ...

 }

}

a) OK

Foo[] a = new Foo[5];

a[4] = new Foo(-1);

Declare and create an array of 5 Foo object

references. The references are all null.

There is a public Foo constructor with 1 integer

parameter.

5

Question 1C
class Foo

{

 private int x1;

 public static int x2;

 public static Bar x3;

 public Foo(int x4)

 {

 ...

 }

}

class Bar

{

 public int x5;

 public static int x6()

 {

 ...

 }

 public Foo x7()

 {

 ...

 }

}

b) Compile error

Foo f = Bar.x7();

The method x7() in the Bar class does not

have the keyword static, so it is an instance

method. Instance methods cannot be called

using the class name.

Question 1C
class Foo

{

 private int x1;

 public static int x2;

 public static Bar x3;

 public Foo(int x4)

 {

 ...

 }

}

class Bar

{

 public int x5;

 public static int x6()

 {

 ...

 }

 public Foo x7()

 {

 ...

 }

}

c) OK

Foo.x2 = Bar.x6();

The method x6() in the Bar class is public, static,

and returns a value of type int. Because of the static

keyword, the method can be called via the class

name.

The value x2 in the Foo class is public, static, and of

type int. Since the value is static, it is a class variable,

and since it is public, it can be accessed outside the class.

6

Question 1C
class Foo

{

 private int x1;

 public static int x2;

 public static Bar x3;

 public Foo(int x4)

 {

 ...

 }

}

class Bar

{

 public int x5;

 public static int x6()

 {

 ...

 }

 public Foo x7()

 {

 ...

 }

}

d) OK

int k = Foo.x3.x5

The value x3 in the Foo class is public, static, and of type

Bar. Because the value is public, x3 can be accessed

outside the class, and because it is static, it can be accessed

via the class name.

In the class Bar, the value x5 is public and of type int. Therefore,

x5 can be accessed from outside of the class, and assigned

to a variable of type int.

Question 1C
class Foo

{

 private int x1;

 public static int x2;

 public static Bar x3;

 public Foo(int x4)

 {

 ...

 }

}

class Bar

{

 public int x5;

 public static int x6()

 {

 ...

 }

 public Foo x7()

 {

 ...

 }

}

e) OK

Bar b = new Bar();

Foo f = b.x7();

Declare and create a new Bar() object. The

invisible default constructor is used, since no

constructors are defined.

Method x7() is a public instance method, so it can

be called on a Bar object. It returns an object

of type Foo, which can be assigned to f.

7

Question 2 [8]
class Football

{

 public static void main(String[] args)

 {

 char[] t = {'G', 'e', 'e', '-', 'G', 'e', 'e'};

 Rec(t, t.length - 1);

 }

 public static void rec(char[] var, int i)

 {

 if (i < 0)

 { ; // do nothing

 }

 else

 {

 if ((var[i] > 'A') && (var[i] < 'Z'))

 {

 System.out.print((char) (var[i] - 'A' + 'a'));

 }

 else

 {

 if ((var[i] > 'a') && (var[i] < 'z'))

 {

 System.out.print((char) (var[i] - 'a' + 'A'));

 }

 else

 { ; // do nothing

 }

 }

 rec(var, i - 1);

 }

 }

}

• Here is a program
that uses
recursion.

• What is printed
by this program?

Question 2

• Let’s look at various parts of the program:

 if ((var[i] > 'A') && (var[i] < 'Z'))

 {

 System.out.print((char) (var[i] - 'A' + 'a'));

 }

• The above will take any upper case letter (except for
′A′ and ′Z′) at index i in the array var, convert it
to lower case, and display the character on the
console.

8

Question 2

 if ((var[i] > 'a') && (var[i] < 'z'))

 {

 System.out.print((char) (var[i] - 'a' + 'A'));

 }

• The above will take any lower case letter (except for
′a′ and ′z′) at index i in the array var, convert it
to upper case, and display the character on the
console.

Question 2

class Football

{

 public static void main(String[] args)

 {

 char[] t = {'G', 'e', 'e', '-', 'G', 'e', 'e'};

 Rec(t, t.length - 1);

 }

 public static void rec(char[] var, int i)

 {

 if (i < 0)

 {

 ; // do nothing

 }

 else

 {

 // if var[i] is upper case, convert to lower case and print it

 // else if var[i] is lower case, convert to upper case and print it

 // else do nothing

 rec(var, i - 1);

 }

 }

}

9

Question 2

 public static void rec(char[] var, int i)

 {

 if (i < 0) // Recursion base case

 {

 ; // do nothing

 }

 else

 {

 // do stuff with var[i]

 rec(var, i - 1); // Recursive call

 }

 }

• The above will go through the array var in the backwards direction;
that is, the index i will be decreasing down to 0.

Question 2

 public static void main(String[] args)

 {

 char[] t = {'G', 'e', 'e', '-', 'G', 'e', 'e'};

 rec(t, t.length - 1);

 }

• The method Rec will start from the end of the array
t, change the case of each letter (ignoring non-letter
characters), and print it.

• The result: EEgEEg

10

Question 3 [15]

• Translate the following algorithm to a Java method:

GIVENS:

 base: (a logarithm base, known to be > 0)

 operand: (an array of integers for which to find the integer
 logarithm)

 n (the number of values in array operand)

RESULT:

 intLog: (an array of n integer logarithms for the values in
 array operand; a value of -1 is returned if the
 logarithm does not exist)

INTERMEDIATES:

 index (array index)

 value (used for repeated divisions)

 count (counts number of times an operand can be divided
 by base)

HEADER: intLog  logarithms(base, operand, n)

Question 3

BODY:

index < n ?

value ≥ base

value ← value / base

count ← count + 1

value ← operand[index]

count ← 0

intLog[index] ← count

operand[index] > 0 ?

intLog[index] ← – 1

index ← 0

intLog ← createNewArray(n)

true

true

true

false

false

false

index ← index + 1

11

Question 3
public static int[] logarithms(int base, int[] operand, int n)

{

 int intlog; // RESULT: An array of logarithms for the values in operand

 int index;

 int value;

 int count;

 index = 0;

 intlog = new int[n];

 while (index < n)

 {

 if (operand[index] > 0)

 {

 value = operand[index];

 count = 0;

 while (value >= base)

 {

 value = value / base;

 count = count + 1;

 }

 intlog[index] = count;

 }

 else

 {

 intlog[index] = -1;

 }

 index + index = 1;

 }

 return intlog;

}

Question 4 [15]

• Olympic 10 metre platform diving events are scored as follows.
Each judge watches an athlete's dive, and then submits a score
for the dive (out of 10). The dive is also previously assigned a
"degree of difficulty" (dd) based on the complexity of the
particular dive (example: forward 2 1/2 somersault in the tuck
position has dd = 2.7). The highest and lowest scores are
discarded, and the remaining scores are added together and
then multiplied by the degree of difficulty to determine the
total dive score.

• Write an algorithm that will compute an athlete's total dive
score from an array of scores submitted by n judges, for a dive
of degree of difficulty dd.

12

Question 4

GIVENS:

scores (An array of judges’ scores)

n (The length of array scores)

dd (Dive’s degree of difficulty)

RESULT:

final (The diver’s final score)

INTERMEDIATES:

index (Index for array scores)

sum (Sum of values in array scores)

max (maximum score)

min (minimum score)

HEADER:

final ← determineFinalScore(scores, n, dd)

Question 4

BODY:

index < N

scores[Index] > max

max ← scores[index]

sum ← sum + scores[index]

index ← index + 1



true

max ← scores[0]

min ← scores[0]

sum ← scores[0]

index ← 1

true
false

final ← dd × (sum – max – min)

scores[index] < min

min ← scores[index] 

false

true

false

13

Question 5 [15]

• The lower right sub-matrix of a matrix is formed by selecting one
element position (row and column) and excluding all elements that are
to the left or above the selected element. For example, in the matrix
m below, if we select m11 = 5, the matrix s is the lower right sub-
matrix.

• Write a Java method that will take a matrix of integers m, and a row
and column index, and returns a new matrix that is the lower right
sub-matrix of m formed from that position. The header of the
method is as follows:

 public static int[][] subMatrix(int[][] m, int theRow, int theCol)

1 2 3

4 5 6

7 8 9

m

 
 


 
  

5 6

8 9
s

 
  
 

Question 5

 public static int[][] submatrix(int[][] m, int theRow, int theCol)

 {

 int[][] s; // RESULT: the submatrix of matrix m

 int sRows; // INTERMEDIATE : number of rows in s

 int sCols; // INTERMEDIATE : number of columns in s

 int row; // INTERMEDIATE: index for row position in s

 int col; // INTERMEDIATE: index for column position in s

 sRows = m.length - theRow;

 sCols = m[0].length - theCol;

 s = new int[sRows][sCols];

 for (row = 0; row < sRows; row = row + 1)

 {

 for (col = 0; col < sCols; col = col + 1)

 {

 s[row][col] = m[row + theRow][col + theCol] ;

 }

 }

 return s;

 }

14

Question 6 [25]

• In this question, you will create a class Experiment
that represents a record of some sort of scientific
experiment. In order to verify that the results of an
experiment are repeatable, there is a class Trial that
contains the results from one run of an experiment.
An experiment will then include a number of Trial
objects.

Question 6

• The class Trial stores a result that was measured
during an experiment, and the duration that the
experiment took, measured in milliseconds. The class
Trial has already been implemented. A UML class
diagram for the class Trial is as follows:

Trial

- result : double

- duration: int

+ Trial(theResult : double, theDuration : double)

+ getResult() : double

+ getDuration() : int

15

Question 6

• In the rest of this question, you will fill in the methods for Experiment.
Your Experiment class should provide four public methods and/or
constructors that would permit the following class TestExperiment to
execute:

class TestExperiment

{

 public static void main (String[] args)

 {

 Experiment anExperiment;

 anExperiment = new Experiment(2);

 anExperiment.addTrial(new Trial(99.1, 10000));

 anExperiment.addTrial(new Trial(97.1, 11000));

 anExperiment.addTrial(new Trial(94.1, 12000));

 Experiment.setPredictedResult(98.6);

 anExperiment.print();

 }

}

• Executing main() would result in the following being printed on the screen :

 No more trials can be added to the experiment.

 Trial 0: Result 99.1, duration 10000 (within 0.5 of prediction)

 Trial 1: Result 97.1, duration 11000 (within 1.5 of prediction)

Question 6

class Experiment

{

 // FIELD DECLARATION(S): (4 marks)

 // CONSTRUCTOR: (5 marks)

 // Takes one integer parameter representing the maximum

 // number of trials that can be put into the experiment

16

Question 6

class Experiment

{

 // FIELD DECLARATION(S): (4 marks)

 private Trial[] trials;

 private int numTrials;

 private static double prediction;

 // CONSTRUCTOR: (5 marks)

 // Takes one integer parameter representing the maximum

 // number of trials that can be put into the experiment

 public Experiment(int maxTrials)

 {

 trials = new Trial[maxTrials];

 numTrials = 0;

 }

Question 6

 // METHOD setPredictedResult: (4 marks)

 // Method parameters: a double that is the predicted result

 // of the experiment.

 // RESULT: none

17

Question 6

 // METHOD setPredictedResult: (4 marks)

 // Method parameters: a double that is the predicted result

 // of the experiment.

 // RESULT: none

public static void setPredictedResult(double newPrediction)

{

 prediction = newPrediction;

}

Question 6

// MODIFIER METHOD addTrial: (6 marks)

// Method parameters: a Trial object that should be added to the Experiment.

// Results: will print a message if the experiment has no room to store

// additional trials (see sample output for message format)

// Modified: the Experiment object

18

Question 6

// MODIFIER METHOD addTrial: (6 marks)

// Method parameters: a Trial object that should be added to the Experiment.

// Results: will print a message if the experiment has no room to store

// additional trials (see sample output for message format)

// Modified: the Experiment object

public void addTrial(Trial newTrial)

{

 if (numTrials >= trials.length)

 {

 System.out.println("No more trials can be added to the experiment.");

 }

 else

 {

 trials[numTrials] = newTrial;

 numTrials = numTrials + 1;

 }

}

Question 6

// METHOD print: (6 marks)

// Method parameters: (none)

// Returns: (none)

// This method prints the result and duration of each trial, along with

// the absolute value of the difference from the predicted result.

// See the TestExperiment sample output for exact format.

19

Question 6

// METHOD print: (6 marks)

// Method parameters: (none)

// Returns: (none)

// This method prints the result and duration of each trial, along with

// the absolute value of the difference from the predicted result.

// See the TestExperiment sample output for exact format.

public void print()

{

 int index;

 double aResult;

 double difference;

 for (index = 0; index < numTrials; index = index + 1)

 {

 aResult = trials[index].getResult();

 difference = Math.abs(aResult – prediction);

 System.out.print("Trial " + index + ": ");

 System.out.print("Result " + aResult + ", ");

 System.out.print("Duration " + trials[index].getDuration() + ", ");

 System.out.println("(within " + difference + " of prediction)");

 }

}

Question 7 [10]
• Question 7: recursive binary search

 public static boolean searchRec(int[] valueList, int findMe,
 int leftIndex, int rightIndex)
 {
 // DECLARE VARIABLES / DATA DICTIONARY

 boolean found; // RESULT: True if search is successful, and false otherwise.
 int mid; // Index of array closest to the midpoint between leftIndex
 // and rightIndex
 // BODY OF ALGORITHM

 // Check for base case. The base case covers 2 situations: leftIndex and rightIndex
 // are the same, or they are two consecutive array positions. The latter case is
 // needed as there is no useful midpoint between two consecutive array
 // positions, and the possibility of not reducing the size of the interval.

 if (leftIndex + 1 >= rightIndex)
 {
 // For the base case, if the value doesn't match one of the two possible
 // endpoints, the value is not in the array.
 found = findMe == valueList[leftIndex] || findMe == valueList[rightIndex];
 }

20

Q7 continued
 else
 {
 // Determine array position closest to the midpoint between leftIndex and rightIndex.
 mid = (leftIndex + rightIndex) / 2;

 // Compare with value at midpoint.
 if (findMe == valueList[mid])
 { // We got lucky and found the value.
 found = true;
 }
 else
 { // Decide whether the value, if it were present, would be to the
 // left of the midpoint or to the right of the midpoint.
 if (findMe < valueList[mid])
 {
 // Value is on left side of midpoint. Search left half of array recursively.
 found = searchRec(valueList, findMe, 0, mid);
 }
 else
 {
 // Value is on the right side of the midpoint. Search right half of array
 // recursively.
 found = searchRec(valueList, findMe, mid, rightIndex);
 }
 }
 }
 return found; // RETURN RESULT
}

